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Abstract
The local density approximation (LDA) to the density functional theory (DFT)
has a continuous derivative of the total energy as a function of the number of
electrons and continuous exchange–correlation potential, while in exact DFT
both functions should be discontinuous as the number of electrons goes through
an integer value. We propose an ad hoc orbital density functional (ODF)
(with orbitals defined as Wannier functions) that by construction obeys this
discontinuity condition. Taking its variation, the one-electron equations are
obtained with a potential in the form of a projection operator. This operator
increases the separation between occupied and empty bands, thus curing an
LDA deficiency—systematic underestimation of the energy gap value. The
minimization of the ODF gives the ground-state orbital and total electron
densities. In addition to that we define the ODF fluctuation Hamiltonian that
allows one to treat dynamical correlation effects. The dynamical mean-field
theory (DMFT) with the quantum Monte Carlo (QMC) method for an effective
impurity problem was used to solve this Hamiltonian. We have applied the ODF
method to the problem of the metal–insulator transition in lanthanum trihydride
LaH3−x . In the LDA calculations for all values of hydrogen nonstoichiometry x
the ground state of this material is metallic, while experimentally the system is
insulating for x < 0.3. The ODF method gave a paramagnetic insulator solution
for LaH3 and LaH2.75 but metallic state for LaH2.5.

1. Introduction

Numerical electronic structure calculations are now a well-established branch of solid-state
physics. While for the finite systems, such as atoms and molecules, more sophisticated and
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rigorous calculation methods exist, for extended systems studied in condensed matter physics
the only widely used practical tool is the density functional theory (DFT) in the local density
approximation (LDA) [1, 2]. It has so great a predictive power that the charge and spin density,
one-electron and total energies obtained in the LDA are generally in very good agreement with
experimental data. It was also possible to develop ab initio molecular dynamic methods, based
on the LDA. Such methods have achieved the level of numerical experiments, because even
such complicated effects as reconstruction of the crystal surface can be correctly described by
them [3].

However, there are materials where the LDA results do not agree well with experimental
data. For band insulators and semiconductors, the LDA gives systematically underestimated
values of the energy gap [4]. For Mott insulators, for example transition-metal oxides, the LDA
results could be qualitatively wrong, giving a metallic state, while experimentally these systems
are wide-gap insulators [5].

There were many attempts to cure this deficiency of the LDA. Among the most widely used
one can mention the GW [6], SIC [7], and LDA + U [8, 9] methods. While these approaches
have their advantages, there is still no universally accepted calculation scheme which would be
as simple and practical as the standard LDA and a search for better methods continues in the
scientific community.

The basic problems of the LDA can be traced back to the fact that the exchange–correlation
energy functional is defined in a local approximation. As a result, its variational derivative, the
exchange–correlation potential (that is a function of the density value in a particular point r
instead of being a general functional of the density) is a continuous function of a number of
electrons. More general approximations, like the GGA [10] method, use in addition to the
electron density its gradient, but have a continuous potential as well. However, Perdew et al
[11] have investigated the properties of the exact density functional (EDF) and shown that its
potential jumps discontinuously when a number of electrons N goes through an integer value.
The proper function of the total energy E versus the number of electrons N should have the
form of a series of straight-line segments with derivative discontinuities at integer values of N ,
while in the LDA this function has continuous derivatives. Any attempts to improve the LDA
as an approximation to the exact density functional theory should be done in such a way that a
new functional would meet this discontinuity requirement.

In the present work we define an ad hoc functional that by construction has the potential
discontinuities required by the exact density functional. To do this, we introduce a concept of
orbital densities corresponding to one-electron orbitals. The orbital density functional (ODF)
depends on a set of orbital densities instead of only the total electron density. When the number
of electrons goes through an integer value, the variational derivative of the ODF functional
jumps discontinuously and the corresponding function of the total energy EODF versus a number
of electrons N has a curve as a series of straight-line segments.

The one-electron equations with a potential in the form of a projection operator were
obtained by varying the ODF. This operator decreases the energy of occupied states and
increases the energy of empty states. As a result, it widens the gap between the valence and
conduction bands compared with the LDA values, thus curing the LDA deficiency that has
shown itself in the systematic underestimation of the energy gap value.

The minimization of the ODF results in a set of orbital densities and hence the total electron
density corresponding to the ground state of the system. The same functional can be used to
calculate energies of the orbital density fluctuations around the ground-state values. From this
functional we have derived a fluctuation Hamiltonian defined via the orbital density fluctuation
operators. This Hamiltonian allows one to treat dynamical correlation effects and hence obtain
a better description of the ground-state properties and spectral function for the excitations. To
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solve the ODF Hamiltonian problem we used in the present work the dynamical mean-field
theory (DMFT) [12–14] with a quantum Monte Carlo (QMC) solver for the effective impurity
problem.

The optimal choice for the one-electron orbitals, which are needed to define the orbital
densities, can be determined by a condition of fluctuation energy minimum. Below it will
be shown that the less extended in space these orbitals are, the lower the energy of orbital
density fluctuations around the ground state is. Therefore, to define orbital densities in our
ODF method, we used maximally localized Wannier functions (WFs) [15].

Recently, we have developed a ‘generalized transition state’ (GTS) method [16] to improve
the agreement of calculated and experimental spectral properties compared with the LDA. In
the present paper we show that the ODF projection operator potential is identical to one in the
GTS method equations, and the good results obtained in [16] for semiconductors, band and
Mott insulators can be considered as a test for applicability of the ODF method. The GTS
method was based on the idea that the one-electron energies corresponding to WFs should have
the meaning of the removal (addition) energies for electrons from (to) the corresponding states.
This concept was realized by using the ‘transition state’ scheme [17] generalized on the basis
of WFs. It is remarkable that such different approaches as the ‘transition state’ correction to the
one-electron energies and requirement of a discontinuity in the exchange–correlation potential
can lead to the same equations.

We have applied the ODF method to the problem of the metal–insulator transition in
LaH3−x . The LDA has severe difficulties for this material because it results in a metallic
solution for all values of hydrogen deficiency x while experimentally the system is insulating
for x < 0.3. We have found that the ODF projection operator potential is enough to open a
gap for stoichiometric LaH3, but in order to reproduce the paramagnetic insulator for LaH2.75

correlation effects should be taken into account via the DMFT-QMC solution of the ODF
fluctuation Hamiltonian.

The paper is structured as follows. In section 2 the ODF functional is defined and in
section 3 the fluctuation Hamiltonian is proposed. The problem of orbital choice is discussed
in section 4. Section 5 describes the calculation scheme. In section 6 the results of ODF
calculations for LaH3−x are presented. Section 7 concludes the paper.

2. Orbital density functional

The exchange–correlation energy in the local density approximation [4] to the density
functional theory [1] is calculated via

ELDA
xc [ρ] =

∫
dr εxc(ρ(r))ρ(r), (1)

where εxc(ρ(r)) is an exchange–correlation energy density for a homogeneous electron gas
with the electron density equal to ρ(r).

Equation (1) defines an exchange–correlation potential Vxc(ρ(r)) = δExc[ρ]/δρ(r)
which is a continuous function of the number of electrons N . However, for the exact
density functional, Perdew et al [11] proved that the exchange–correlation potential jumps
discontinuously when the number of electrons N goes through an integer value.

The Hohenberg–Kohn theorem [2] was extended in [11] to fractional electron number. It
was shown that for the electron density ρ(r) which integrates to N = M + ω, where M is an
integer and 0 � ω � 1, the exact density functional EEDF is

EEDF(M + ω) = (1 − ω)EEDF(M)+ ωEEDF(M + 1). (2)
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This means that in general the curve of EEDF versus N is a series of straight-line segments with
derivative discontinuities at integer values of N .

It was proven [11] that the chemical potential μ = ∂EEDF/∂N is discontinues when the
number of electrons goes through integer value:

μ =
{

−I (M − 1 < N < M)

−A (M < N < M + 1)
(3)

where I = EEDF(M − 1) − EEDF(M) and A = EEDF(M) − EEDF(M + 1) are removal and
addition energies respectively. The functional derivative δEEDF/δρ(r) is also discontinuous:
two limits for N approaching M from above and below will differ by constant I –A.

The electron density can be expressed as a sum of the ‘orbital densities’ ρi (r) defined in
the following way (ni is the occupancy of an i th orbital wave function, ψi (r)):

ρ(r) =
∑

i

ρi (r),

ρi (r) ≡ ni |ψi (r)|2.
(4)

The orbital densities can be varied from zero to the maximum values ρmax
i (r) = |ψi (r)|2.

The condition of linear dependence of the exact density functional on the fractional number
of electrons (2) can be expressed via the orbital density ρ j(r) corresponding to the partially
occupied orbital j . This orbital is the lowest unoccupied one for number of electrons N = M
and the highest occupied for N = M + 1. The variation of the total electron density ρ(r)
will be defined only by the variation of ρ j (r) for the number of electrons changing from M to
M + 1:

EEDF[ρ] = EEDF[ρ0 + ρ j ] = EEDF

∣∣∣
ρ j (r)=0

+
∫

dr ρ j (r)� j (r), (5)

where ρ0(r) is the density for the number of electrons N = M . Here � j(r) satisfies the
equation ∫

dr ρmax
j (r)� j (r) = EEDF

∣∣∣
ρ j (r)=ρmax

j (r)
− EEDF

∣∣∣
ρ j (r)=0

. (6)

The orbital density ρ j (r) enters (5) in a linear form. However, the LDA functional does not
show such a linear dependence on density variation. The equation analogous to (5) for the LDA
has a general form (keeping only the first and second variational derivatives in the expansion
series):

ELDA[ρ] = ELDA[ρ0 + ρ j ] ≈ ELDA

∣∣∣
ρ j (r)=0

+
∫

dr ρ j(r)
δELDA

δρ(r)

∣∣∣
ρ j (r)=0

+ 1

2

∫
dr ρ j (r)

∫
dr′ ρ j (r′)

δ2 ELDA

δρ(r)δρ(r′)

∣∣∣
ρ j (r)=0

. (7)

The second variational derivative of the LDA functional can be expressed using a response
function χ(r, r′) [18, 19]:

δ2 ELDA

δρ(r)δρ(r′)
= 1

|r − r′| + δ(r − r′)
δVxc(r)
δρ(r′)

− χ−1(r, r′) ≡ W (r, r′); (8)

W (r, r′) can be interpreted as an effective interaction strength between density fluctuations
δρ(r) and δρ(r′) in the LDA functional. The first variational derivative of the LDA functional
is

δELDA

δρ(r)
= −
[ρ](r), (9)
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where 
[ρ](r) is a constraining potential needed to obtain electron density ρ(r) in the self-
consistent solution of the Kohn–Sham equations.

Using (8) and (9), expansion (7) can be rewritten via the constrain potential 
(r) and
effective interaction strength function W (r, r′):

ELDA[ρ] = ELDA[ρ0 + ρ j ] ≈ ELDA

∣∣∣
ρ j (r)=0

+
∫

dr ρ j(r)
(r)
∣∣∣
ρ j (r)=0

+ 1
2

∫
dr ρ j(r)

∫
dr′ ρ j (r′)W (r, r′)

∣∣∣
ρ j (r)=0

. (10)

If one adds to (7) a correction term

Ecorr[ρ j ] ≡ − 1
2

∫
dr ρ j (r)

∫
dr′ (ρ j(r′)− ρmax

j (r′))W (r, r′)
∣∣∣
ρ j (r)=0

, (11)

then the linear dependence on the density variations (as it is required for the exact density
functional (5)) will be restored:

ELDA[ρ0 + ρ j ] + Ecorr[ρ j ] ≈ ELDA

∣∣∣
ρ j (r)=0

+
∫

dr ρ j (r)
(

(r)

∣∣∣
ρ j (r)=0

+ 1
2

∫
dr′ ρmax

j (r′)W (r, r′)
∣∣∣
ρ j (r)=0

)
. (12)

Equation (12) is equivalent to (5) with the function � j(r) equal to

� j (r) = 
(r)
∣∣∣
ρ j (r)=0

+ 1
2

∫
dr′ ρmax

j (r′)W (r, r′)
∣∣∣
ρ j (r)=0

. (13)

Now we are ready to write an ad hoc correction to the LDA functional to imitate the linear
form of the functional (5). We define the ‘orbital density functional’ EODF as

EODF[{ρi}] ≡ ELDA[ρ] − 1
2

∑
i

∫
dr ρi (r)

∫
dr′ (ρi (r′)− ρmax

i (r′))W (r, r′)
∣∣∣
ρi (r)=0

. (14)

Please note that the ODF functional (14) depends both on the total charge density ρ(r) via
ELDA[ρ] and explicitly on a set of orbital densities {ρi(r)}.

Let us investigate the dependence of the functional (14) on the number of electrons N .
Note that for the integer values of N corresponding to the integer orbital occupancies ni the
value of the functional (14) coincides with the corresponding value of the LDA functional. For
integer ni values, the orbital density ρi (r) is equal either to zero (for an empty state, ni = 0)
or ρmax

i (r) (for an occupied state, ni = 1). In both cases the correction term in (14) vanishes.
We will show that according to the properties [11] of the exact density functional EEDF (2) this
dependence corresponds to the curve of EODF versus N as a series of straight-line segments
with derivative discontinuities at integer values of N .

The increase of the total number of electrons N occurs via the consequential increase of
the orbital occupancies ni so that when N changes from M to M + 1 the value of the ni

corresponding to the highest occupied orbital for the system with M + 1 electrons changes
from 0 to 1. The corresponding variation δρ(r) of the total charge density ρ(r) will consist
exclusively of the variation of the corresponding orbital density ρ j (r) of particular orbital j .
The variational derivative of the functional (14) is equal to

δEODF

δρ(r)

∣∣∣
N=M+ω

= δEODF

δρ j(r)
= δELDA

δρ(r)
−

∫
dr′

(
ρ j (r′)− 1

2
ρmax

j (r′)
)

W (r, r′)
∣∣∣
ρ j (r)=0

. (15)

(Please note that the expression δEODF
δρ(r) |N=M+ω does not mean a general variation of the LDA

functional but only a variation that happens when the number of electrons N changes from M
to M + 1 in the limit of ω tending to zero.)
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The first term in the right-hand part of (15), δELDA/δρ(r), is continuous. However, the
second term depends on the index j . When the number of electrons N equals M − ω, j
corresponds to the highest occupied orbital for the system with M electrons. However, for
N = M + ω the index will change to j + 1, corresponding to the lowest unoccupied orbital
for the system with M electrons or the highest occupied orbital for the system with M + 1
electrons. The value of ρ j (r′) in the integral in the right-hand part of (15) will jump from
ρmax

j (r′) to zero with N going from M − ω to M + ω for infinitesimally small ω. This results
in the corresponding jump of the variational derivative δEODF/δρ(r):

δEODF

δρ(r)

∣∣∣
N=M+ω

− δEODF

δρ(r)

∣∣∣
N=M−ω

= 1
2

∫
dr′

(
ρmax

j (r′)W (r, r′)
∣∣∣
ρ j (r)=0

+ ρmax
j+1(r

′)W (r, r′)
∣∣∣
ρ j+1(r)=0

)
. (16)

In order to show that the variational derivative δEODF/δρ(r) is constant for the number of
electrons varying from M to M+1, we need an explicit expression for the variational derivative
of the LDA functional δELDA/δρ(r). The latter can be obtained by using an expansion of (7)
and (10):

δELDA

δρ(r)

∣∣∣
N=M+ω

= δELDA

δρ j (r)
≈ δELDA

δρ(r)

∣∣∣
ρ j (r)=0

+
∫

dr′ ρ j(r′)
δ2 ELDA

δρ(r)δρ(r′)

∣∣∣
ρ j (r)=0

= 
(r)
∣∣∣
ρ j (r)=0

+
∫

dr′ ρ j(r′)W (r, r′)
∣∣∣
ρ j (r)=0

. (17)

Equation (15) takes the form

δEODF

δρ(r)

∣∣∣
N=M+ω

= δEODF

δρ j(r)
≈ δELDA

δρ(r)

∣∣∣
ρ j (r)=0

+ 1

2

∫
dr′ ρmax

j (r′)
δ2 ELDA

δρ(r)δρ(r′)

∣∣∣
ρ j (r)=0

= 
(r)
∣∣∣
ρ j (r)=0

+ 1

2

∫
dr′ ρmax

j (r′)W (r, r′)
∣∣∣
ρ j (r)=0

. (18)

The right-hand part of (18) does not depend on ρ j , and hence it is constant for a fractional
number of electrons n j . The jump of δEODF/δρ(r) in (16) can be assigned to the jump in the
variational derivative of the effective exchange–correlation energy term in the ODF functional
δEODF

xc /δρ(r).
The functional (14) can be rewritten in a simpler form that can be used in practical

calculations if the set of orbitals ψi (r) is fixed. Then variation of the orbital density ρi(r)
occurs only via variation of the occupancy ni :

δρi (r) = δni |ψi (r)|2. (19)

Then the second variation of the LDA functional is

δ2 ELDA = 1
2

∑
i j

∫
dr δρi(r)

∫
dr′ δρ j(r′)W (r, r′)

= 1
2

∑
i j

δniδn j

∫
dr |ψi (r)|2

∫
dr′ |ψ j (r′)|2W (r, r′). (20)

The second derivative of the LDA functional with respect to the occupancy ni is

δ2 ELDA

δniδn j
=

∫
dr |ψi (r)|2

∫
dr′ |ψ j (r′)|2W (r, r′). (21)

The value of the derivative δ2 ELDA/δniδn j could be obtained in the constrained LDA
calculation either in a direct way or by taking into account that the derivative of the
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LDA functional with respect to the orbital occupancy δELDA/δni is equal to a one-electron
eigenvalue εi :

δ2 ELDA

δniδn j
= δεi

δn j
. (22)

Using (19)–(22), the ODF functional (14) could be rewritten via occupancies ni :

EODF[ρ(r), {ni}] = ELDA[ρ(r)] − 1

2

∑
i

ni (ni − 1)
δεi

δni
. (23)

Please note that while the LDA functional depends on ni only implicitly via the charge density
ρ(r), the ODF functional depends not only on ρ(r) but also explicitly on the set of occupancies
{n j }.

The derivative of the ODF functional (14) with respect to the total number of electrons N
can be expressed by using the occupancy ni of a partially occupied orbital j :

δEODF

δN

∣∣∣
N=M+ω

= δEODF

δn j
= δELDA

δn j
+

(
1

2
− n j

)
δε j

δn j
= ε j +

(
1

2
− n j

)
δε j

δn j
. (24)

One can assume a linear dependence of ε j (n j ) on n j which is equivalent to keeping only the
first and second variational derivatives in (7). Then it is possible to show that the derivative
δEODF/δN does not depend on n j :

δEODF

δN

∣∣∣
N=M+ω

≈ ε j

∣∣∣
n j =0

+ n j
δε j

δn j

∣∣∣
n j =0

+
(

1

2
− n j

)
δε j

δn j

∣∣∣
n j =0

= ε j

∣∣∣
n j =0

+ 1

2

δε j

δn j

∣∣∣
n j =0

.

(25)

The analogue of (16) demonstrates a jump of δEODF/δN when the number of electrons N goes
through an integer value M :

δEODF

δN

∣∣∣
N=M+ω

− δEODF

δN

∣∣∣
N=M−ω

= (ε j+1 − ε j )+ 1

2

(
δε j

δn j
+ δε j+1

δn j+1

)
. (26)

We have shown that with the accuracy of expansion of (7) the variational derivative of the
‘orbital density functional’ EODF (14) conforms to the condition for the exact density functional
found in [11]: it is constant for a fractional number of electrons and has a discontinuity when
the number of electrons goes through an integer value.

One should keep in mind that the ‘orbital density functional’ (14) was defined as ‘ad hoc’
formulae and the fact that it obeys exact conditions cannot be considered as a proof of its
validity. However, one can hope that an expression with a proper analytical behaviour can give
an improvement in the calculation results. Below we will demonstrate that this is indeed the
case.

Equations (23) and (24) are directly related to the ‘transition state’ approach to calculate
excitation energies proposed by Slater [17]. In this scheme the LDA eigenvalue (eigenvalue of
the Kohn–Sham equations) of the corresponding one-electron state should be calculated with
its occupancy equal to 0.5 (half-way between the initial and final states of excitation process).
One can identify a derivative of the ODF functional (23) over occupancy ni as a corresponding
one-electron energy εODF

i :

εODF
i ≡ δEODF

δni
= εLDA

i +
(

1

2
− ni

)
δεi

δni
. (27)

If the LDA eigenvalue εi (ni) is a linear function of the occupancy ni (δεi/δni = const) (which
is equivalent to the expansion in (25) leaving only the first two terms in the expansion), then
for an empty state (ni = 0)

7
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εLDA
i (0.5) = εLDA

i (0)+ 1

2

δεi

δni
. (28)

For occupied states (ni = 1) the plus sign in (28) will be replaced by minus. One can see
that (27) reproduces both these cases:

εODF
i = εLDA

i (ni )+
(

1

2
− ni

)
δεi

δni
= εLDA

i (0.5). (29)

In [16] we have introduced an auxiliary functional by variation of which (29) giving
the ‘transition state’ correction to one-electron energies can be obtained. That functional is
identical to the functional (23). It is interesting to note that the same ad hoc correction to the
LDA functional can result in reproducing analytical properties known for the exact density
functional [11] and provide ‘transition state’ eigenvalues.

3. Fluctuation Hamiltonian

The minimization of the ODF functional (14) will give a set of orbital densities {ρi (r)} and
hence the total charge density ρ(r) corresponding to the ground state of the system. It is useful
to derive equations for fluctuations of the orbital densities {δρi(r)} around the average ground-
state functions {ρi (r)}. This ‘ground-state’ charge density ρ(r) corresponds to the minimum of
the ODF functional (14) but not of the LDA functional, so one must use a constrain potential

(r) in the calculations. Analogous to the expansions (7) and (10) one can write expression
for the LDA part of the ODF functional:

ELDA[{ρi + δρi}] ≈ ELDA[{ρi}] +
∑

i

∫
dr δρi(r)
(r)

+ 1
2

∑
i

∑
j

∫
dr δρi(r)

∫
dr′ δρ j(r′)W (r, r′). (30)

The corresponding expression for the correction term (11) is

Ecorr[{ρi + δρi}] ≈ Ecorr[{ρi}]
−

∑
i

∫
dr δρi (r)

∫
dr′ (ρi (r′)− 1

2ρ
max
i (r′))W (r, r′)

− 1
2

∑
i

∫
dr δρi(r)

∫
dr′ δρi(r′)W (r, r′). (31)

Both (30) and (31) become exact if one supposes that δ2 ELDA
δρ(r)δρ(r′) = W (r, r′) does not depend on

the fluctuations δρi(r). As a result, all variational derivatives higher than the second order are
equal to zero. In the following we assume that this approximation is valid. Then for the total
ODF functional one has

EODF[{ρi + δρi }] = EODF[{ρi}]
+

∑
i

∫
dr δρi (r)

(

(r)−

∫
dr′ (ρi (r′)− 1

2ρ
max
i (r′))W (r, r′)

)

+ 1
2

∑
i

∑
j �=i

∫
dr δρi(r)

∫
dr′δρ j(r′)W (r, r′). (32)

It is convenient to introduce an effective ODF potential V ODF
i (r):

V ODF
i (r) ≡ 
(r)−

∫
dr′ (ρi(r′)− 1

2ρ
max
i (r′))W (r, r′). (33)

8
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Using (32) and (33), one can define a Hamiltonian for the density matrix fluctuation
operators δ̂ρi (r) ≡ ρ̂i (r) − ρi (r) (here a ground-state orbital density can be considered as
an average value of a density matrix operator ρi (r) = 〈ρ̂i (r)〉):
ĤODF ≡

∑
i

∫
dr δ̂ρi(r)V

ODF
i (r)+ 1

2

∑
i

∑
j �=i

∫
dr δ̂ρi (r)

∫
dr′ δ̂ρ j (r

′)W (r, r′). (34)

The orbital density matrix operators ρ̂i (r) could be expressed via orbital occupancy
operators n̂i (if the orbitals ψi (r) are fixed and the variation of the orbital density ρi (r) occurs
only via variation of occupancies ni ):

ρ̂i (r) = n̂i |ψi (r)|2. (35)

Then fluctuation Hamiltonian (34) can be rewritten (using (19)–(22)) via occupancy operators
n̂i and their average values ni = 〈̂ni 〉 (δ̂ni ≡ n̂i − 〈̂ni 〉):

ĤODF =
∑

i

(
εi +

(
1

2
− ni

)
∂εi

∂ni

)
δ̂ni + 1

2

∑
i

∑
j �=i

∂εi

∂n j
δ̂ni δ̂n j . (36)

4. The choice of the orbitals and Wannier functions

The orbital densities ρi(r) are defined by orbitals ψi (r) in the expression for the charge density
in (4). In the density functional theory it is usually assumed that these orbitals are solutions of
the Kohn–Sham equations. However, any unitary transformation (defined by the unitary matrix
U ) of the set of the occupied functions ψi (r) produces a new set of orbitals

ψ̃i (r) ≡
∑

j

Ui jψ j (r) (37)

corresponding to the same charge density ρ(r). This new set of orbitals can be used to define
the ODF functional in (14) and so this functional is orbital dependent.

In order to remove the uncertainty in choosing the orbital set, one needs to impose an
additional condition. We propose the following way to do it: to minimize the energy of orbital
density fluctuation defined as the expectation value of the fluctuation Hamiltonian (34):

〈ĤODF〉 = 1
2

∑
i

∑
j �=i

∫
dr

∫
dr′ 〈δ̂ρ i(r)δ̂ρ j(r

′)〉W (r, r′). (38)

(The average value of fluctuations 〈δ̂ρi(r)〉 is equal to zero so the first term in (34) does not give
a contribution to the fluctuation energy.) Taking into account (30) and (31), one can separate
contributions to (38) from the LDA functional, where summation over i and j is performed
including terms with i = j , and a correction term (31).

The LDA part is

〈ĤLDA〉 = 1
2

∑
i

∑
j

∫
dr

∫
dr′ 〈δ̂ρi (r)δ̂ρ j(r

′)〉W (r, r′)

= 1
2

∫
dr

∫
dr′

〈∑
i

δ̂ρi (r)
∑

j

δ̂ρ j (r
′)

〉
W (r, r′)

= 1
2

∫
dr

∫
dr′ 〈δ̂ρ(r)δ̂ρ(r′)〉W (r, r′). (39)

The correction term gives a negative contribution to the total energy equal to

〈Ĥcorr〉 = − 1
2

∑
i

∫
dr

∫
dr′ 〈δ̂ρi(r)δ̂ρi (r

′)〉W (r, r′). (40)

9
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From (39) one can see that the LDA contribution to the fluctuation energy is defined by
the total charge density fluctuations 〈δ̂ρ(r)δ̂ρ(r′)〉 and hence does not depend on the orbitals’
definition. The minimum of the fluctuation energy (38) is achieved when the absolute value of
the correction contribution (40) has a maximum.

The correction term contribution in (40) can be calculated by using the expression for the
fluctuation Hamiltonian via the fluctuation occupancy operators δ̂ni (36) as

〈Ĥcorr〉 = −1

2

∑
i

〈δ̂ni δ̂ni 〉 ∂εi

∂ni
. (41)

As the average value of square of occupancy fluctuations 〈δ̂ni δ̂ni〉 depends on the specific
properties of the system, the only way to minimize the fluctuation energy 〈Ĥ〉 (38) is to
maximize ∂εi/∂ni . Using (21) and (22); this parameter can be expressed via orbitals as

∂εi

∂ni
= δ2 ELDA

δn2
i

=
∫

dr |ψi (r)|2
∫

dr′ |ψi (r′)|2W (r, r′). (42)

For a new set of functions ψ̃i (r) (37), one has

δε̃i

δñi
=

∑
j j ′ll′

Ui jU
∗
i j ′UilU

∗
il′

∫
dr

∫
dr′ ψ j (r)ψ∗

j ′(r)W (r, r′)ψl(r′)ψ∗
l′ (r

′). (43)

Using (43) and the fact that the derivatives δεi/δni are always positive, one can define a
functional of the unitary matrix U :

F[U ] ≡
∑

i

δε̃i

δñi
=

∑
i

∑
j j ′ll′

Ui j U
∗
i j ′UilU

∗
il′

∫
dr

∫
dr′ ψ j (r)ψ∗

j ′(r)W (r, r′)ψl(r′)ψ∗
l′ (r

′), (44)

maximization of which one can be used as a condition to determine the matrix U and hence the
optimal set of the orbitals ψi (r) to define the ODF functional.

The function W (r, r′) (8) is defined as the screened effective interaction between density
fluctuations δρ(r), δρ(r′) and hence should decay with increasing of |r − r′| value. Then the
more localized in space the orbitalsψi (r) are, the larger should be the value of the integral (42).
One of the possible choices for these orbitals could be Wannier functions (WFs) [22]. Two
orthonormal sets of functions, Wannier and Bloch, are connected via unitary transformation
so WFs can be considered as a particular choice of the unitary matrix U in (37). Marzari
and Vanderbilt in [15] proposed the condition of maximum localization to determine the
procedure to calculate WFs for the multi-band case. The requirement of maximum localization
should lead to reasonably maximized values of the parameter ∂εi/∂ni in (42) and hence to the
minimization of the fluctuation energy (38). Then WFs obtained via the procedure proposed
in [15, 23] are a good choice for a set of orbitals to define the ODF functional.

In the following we will assume that orbital densities are defined by WFs Wn(r) and their
occupancies Qn calculated via the procedure described in [21] (thus the orbital functions basis
set is chosen to be formed by Wannier functions instead of the eigenfunctions ψi , and that is
emphasized by using notations Wn(r) and Qn instead of ψi and ni ):

ρ(r) =
∑

n

ρn(r),

ρn(r) = Qn|Wn(r)|2.
(45)

Using equations (23)–(35), the ODF functional (14) could be rewritten with the WF
occupancy operators

Q̂n = |Wn〉〈Wn | (46)

10
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(|Wn〉 in (46) are Wannier functions) and their average values

Qn = 〈Q̂n〉 =
∑

ioccupied

〈ψi |Q̂n|ψi〉. (47)

The corresponding functional will be similar to (23) but with the WF occupancies Qn and
energies En

EODF = ELDA − 1

2

∑
n

∂En

∂Qn
Qn(Qn − 1). (48)

The variation of the functional (48) will produce the one-electron Hamiltonian Ĥ 0
ODF in the

form of the projection operator (see equations (46), (47) and also [16]):

Ĥ 0
ODF = ĤLDA +

∑
n

δVn Q̂n = ĤLDA +
∑

n

|Wn〉δVn〈Wn |, (49)

δVn are

δVn = ∂En

∂Qn

(
1

2
− Qn

)
. (50)

The values of the derivatives ∂En/∂Qn should be determined in the constrained LDA
calculations (see [16]).

The Wannier function analogue of the fluctuation Hamiltonian (36) is

ĤODF = Ĥ 0
ODF + 1

2

∑
n

∑
n′ �=n

∂En

∂Qn′
(Q̂n − 〈Q̂n〉)(Q̂n′ − 〈Q̂n′ 〉). (51)

5. ODF calculation scheme

Equations (48)–(51) define the ODF calculation scheme. The Hamiltonian Ĥ 0
ODF (49) can be

considered as a static mean-field approximation to a general problem. It is the analogue of the
LDA+U [8, 9] method with Wannier functions used instead of atomic d or f orbitals. For band
insulators and Mott–Hubbard insulators with long-range spin ordering Ĥ 0

ODF is a good enough
approximation and its solution can be considered as a final step in the calculations. However,
for strongly correlated metals and paramagnetic Mott insulators, dynamical effects due to the
fluctuations play a crucial role, and one should solve the problem defined by the fluctuation
Hamiltonian (51). Using this Hamiltonian, we construct a dynamical approximation scheme
with the dynamical mean-field theory to solve the arising impurity problem.

Equations (49) and (50) are identical to the equations of ‘generalized transition state’
(GTS) method that we have developed in [16]. The basis of the GTS method was an idea
that one-electron energies corresponding to WFs should have the meaning of the removal
(addition) energies for electrons from (to) the corresponding states. That was realized by
using a ‘transition-state’ scheme [17] generalized to WFs instead of eigenfunctions. It is
remarkable that the same equations can be obtained by introducing ‘ad hoc’ correction to the
LDA functional restoring the properties of the exact density functional theory [11].

The potential correction operator (49) and (50) shifts the energies of Wannier functions
by the δVn values which are negative (δVn = − 1

2
∂En
∂Qn

) for the occupied states (Qn = 1) and

positive (δVn = 1
2
∂En
∂Qn

) for the empty states (Qn = 0). That makes the valence bands to be
pushed down and the conduction bands pushed up compared to the standard LDA, and thus
results in a wider energy gap, systematically underestimated in the LDA. In [16] it was shown
that calculations with the potential correction (49) and (50) result in a much better agreement
with experimental energy gap values for a semiconductor (Si), band insulator (MgO), Mott
insulator (NiO), and Peierls insulator BaBiO3.

11
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For metals, Wannier function occupancy values Qn can be non-integer, and the potential
correction δVn (50) will be much smaller than the insulator values ± 1

2
∂En
∂Qn

. For half-filled bands
Qn = 0.5 and the potential correction vanishes (δVn = 0). For this case only the solution of
the fluctuation Hamiltonian (51) can give non-trivial results.

The first and second parts of the Hamiltonian (51) are not (!) a noninteracting Hamiltonian
and an interaction term, as is usually defined in model Hubbard and Anderson Hamiltonians.
The first term, Ĥ 0

ODF, is equivalent to the Hartree–Fock approximation Hamiltonian determined
by the average values of the WF occupancies 〈Q̂n〉. The second part describes the interaction
between fluctuations around 〈Q̂n〉. As these average values are determined from the solution
of the full Hamiltonian (51), that defines a self-consistent calculation scheme. In contrast to
the LDA+ U [8, 9] and LDA + DMFT [20] methods, there is no ‘double counting’ problem in
this Hamiltonian because there is no ‘merging’ of LDA and Hubbard model concepts, and both
terms in (51) were derived from the same functional (48).

The problem defined by the Hamiltonian (51) can be solved by any of the methods
developed to treat many-body effects. In the present work we have used dynamical mean-field
theory [12–14] which finalizes the dynamical approximation scheme for the ODF method.

The DMFT [12–14] was recently found to be a powerful tool to numerically solve
multiband Hubbard models. In order to use this tool, the fluctuation Hamiltonian (51) should be
rewritten in the form of a standard multi-orbital Hubbard model. For that one needs to identify
the Coulomb parameters Unn′ as derivatives ∂En/∂Qn′ and rearrange the terms in (51) into
noninteracting and interaction terms:

ĤODF = Ĥ 0 + Ĥint (52)

with the interaction term

Ĥint = 1
2

∑
n

∑
n′ �=n

Unn′ Q̂n Q̂n′ (53)

and the noninteracting Hamiltonian

Ĥ 0 = Ĥ 0
ODF + 1

2

∑
n

∑
n′ �=n

Unn′ 〈Q̂n〉〈Q̂n′ 〉 −
∑

n

Q̂n

∑
n′ �=n

Unn′ 〈Q̂n′ 〉. (54)

In the LDA + DMFT method (see [17]) as well as in the LDA + U method, a problem of
double counting of the Coulomb interaction appears. Equation (52) together with (49) can be
considered as a specific choice of the double counting term. However, one should note that it
was not imposed on the formalism using some physical arguments but was derived from the
expression for ‘orbital density functional’ (14) which in its turn was constructed to obey the
exact condition of the density functional theory.

Let us briefly summarize the employed formulation of the DMFT method. In DMFT
the lattice problem becomes an effective single-site problem which has to be solved self-
consistently for the matrix self-energy �̂ and the local matrix Green function in the WF basis
set:

Gnn′(ε) = 1

VB Z

∫
dk

([
(ε − μ)̂1 − Ĥ 0(k)− �̂(ε)

]−1
)

nn′
, (55)

where μ is a chemical potential, Ĥ 0 is the noninteracting Hamiltonian (54) and �̂(ε) is the
self-energy in the Wannier function basis:

�̂(ε) =
∑
nn′

|Wn〉�nn′(ε)〈Wn′ |. (56)

The DMFT single-site problem may be viewed as a self-consistent single-impurity
Anderson model [14]. The corresponding local one-particle matrix Green function Ĝ can be

12



J. Phys.: Condens. Matter 19 (2007) 106206 V I Anisimov et al

Figure 1. LaH3 band structure and density of states calculated in the standard LDA.

written as a functional integral [14] involving an action where the Hamiltonian of the correlation
problem under investigation, including the interaction term with the Hubbard interaction,
enters [20]. The action depends on the bath matrix Green function Ĝ through

(Ĝ)−1 = (Ĝ)−1 + �̂. (57)

To solve the functional integral of the effective single-impurity Anderson problem, various
methods can be used: quantum Monte Carlo (QMC), numerical renormalization group (NRG),
exact diagonalization (ED), non-crossing approximation (NCA), etc (for a brief overview of
the methods see [20]). In the present work the QMC method was used to solve the impurity
problem.

The orbital density functional computational scheme described above is ab initio (it does
not contain any outside parameters) and fully self-consistent. The charge density ρ(r), Wannier
functions Wn(r), and derivatives ∂En/∂Qn′ (effective fluctuation interaction strengths) are
recalculated on each self-consistency loop and hence are modified by correlations compared
with the values obtained in the standard LDA calculations. In the present work we used the
LMTO basis [24, 25] to construct the Wannier functions. An analogous calculation scheme for
the LDA + DMFT method in the Wannier function basis set was developed in [21], where all
computational details used in the present work can be found.

One can calculate the charge-density distribution modified by correlation effects using the
Green function calculated in (55):

ρ(r) = − 1

π
Im

∫ Ef

−∞
dε G(r, r, ε). (58)

With this ρ(r) one can recalculate the LDA potential, which is a functional of electron density.
From the Green function one can recalculate new WFs (see [21] for calculation details), which
together with the new LDA potential allows one to obtain new parameters for the noninteracting
Hamiltonian (49) and (54). With the new set of WFs one performs a series of the constrained
LDA calculations to determine the derivatives ∂En/∂Qn′ and hence define new values of the
Coulomb interaction parameters Unn′ in the interaction Hamiltonian (53). The set of new LDA
potential, WFs, and Coulomb interaction parameters calculated from the interacting Green
function (55) defines the input for the next iteration step and hence closes the self-consistency
loop in the computation scheme.
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Figure 2. LaH3 band structure and density of states calculated in the orbital density functional
(ODF) theory (48). The zero of energy is at the Fermi energy.

Figure 3. LaH2.75 density of states calculated (a) in the standard LDA and (b) in ODF (48).

In the present work, the ODF method was applied to the problem of the metal–
insulator transition in nonstoichiometric lanthanum trihydride LaH3−x , where both parts of
the ODF calculation scheme (static mean-field approximation (48)–(50) and the fluctuation
Hamiltonian (51) solved by the DMFT method) were used to describe the experimentally
observed dependence of the ground state of the system on the hydrogen concentration
parameter x .
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Figure 4. LaH2.5 density of states calculated (a) in the standard LDA and (b) in ODF (48).

6. Electronic structure of nonstoichiometric lanthanum trihydride

The lanthanum trihydride LaH3−x shows an interesting metal–insulator transition with increase
of the x value [26]. While stoichiometric LaH3 is an insulator, 30% hydrogen deficiency
(x ≈ 0.3) results in a metallic ground state. However, the standard LDA calculations [27]
give a metal as a ground state even for the stoichiometric composition LaH3. In this case the
well-known problem of the LDA, underestimation of the energy gap value, is so severe that the
gap value is negative with valence and conduction bands with overlap of 0.25 eV (see figure 1).

Lanthanum trihydride has a crystal structure derived from the face-centred cubic structure
(lattice parameter a = 10.5946 au) for La atoms and hydrogen atoms occupying two tetrahedral
interstitials and one octahedral interstitial per metallic ion. The band structure of LaH3

(figure 1) is relatively simple: the lower three occupied bands are formed by hydrogen 1s
states and the conduction bands correspond to lanthanum 5d, 6s, and 6p states.

Attempts to cure the LDA fault in LaH3 were performed with many methods beyond
LDA: among others, GW [28] (the energy gap Eg = 0.8–0.9 eV), weighted local density
approach [29] (Eg = 0.7 eV), and model calculations [30].

The orbital density functional (ODF) theory (48) proposed in the present work adds to the
standard Kohn–Sham equations potential correction in the form of the projection operator (49)
and (50). This correction is negative for occupied valence bands and positive for empty
conduction bands, and hence increases the energy separation between these bands. The ODF
calculations for LaH3 result in an insulating ground state with a fundamental gap value of
1.10 eV and direct optical gap 1.25 eV at the G-point (see figure 2). Experimental data for the
value of the energy gap Eexpt

g = 0.5 eV were estimated using the activation energy determined
from resistivity measurements in [31]. Optical measurements estimate the direct gap Eg as
1.87 eV, but the fundamental band gap is ∼1 eV lower [32].
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Figure 5. (a) LaH2.5 and (b) LaH2.75 densities of states calculated with the ODF fluctuation
Hamiltonian (51) in DMFT-QMC.

Hydrogen atoms could be removed from lanthanum trihydride, forming nonstoichiometric
LaH3−x . We have performed LDA and ODF calculations for two compositions: x = 0.25
(LaH2.75) (see figure 3) and x = 0.5 (LaH2.5) (see figure 4).

Both LDA and ODF calculations gave a metallic ground state for the two compositions
x = 0.25 and 0.5. Each hydrogen vacancy leads to the appearance of one vacancy state in the
gap split from the conduction band with one electron occupying this state (see figure 3(a)). The
static mean-field ODF potential correction (49) and (50) results in separation of the vacancy
band from the conduction band and in an increase of the energy gap between the valence and
conduction bands compared with the LDA, but the half-filled vacancy band stays metallic (see
figures 3(b) and 4(b)). However, experimentally only LaH2.5 is metallic while LaH2.75 should
be an insulator. To treat this problem we have used the ODF fluctuation Hamiltonian (51)
and have solved it using the DMFT-QMC method. The inverse temperature parameter was
β = 15 eV−1. We obtained a paramagnetic insulator ground state for LaH2.75 with a typical
Mott insulator pattern of lower and upper Hubbard bands around the chemical potential with
an energy gap of 0.1 eV (see figure 5(b)) in agreement with experiment. However, for LaH2.5

the width of the vacancy band is significantly larger than for LaH2.75 (see figures 3(b) and 4(b))
and the DMFT calculations resulted in a well-defined metallic state (see figure 5(a)).

7. Conclusion

We have proposed an ‘ad hoc’ orbital density functional that by construction has discontinuous
exchange–correlation potential imitating the properties of exact density functional theory.
The one-electron potential obtained by variation of this functional produces lower energies
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for valence bands and higher energies for conduction bands compared with the LDA, thus
overcoming the systematic underestimation of the energy gap value in the LDA. In addition to
that, we have defined the Hamiltonian corresponding to the fluctuations of the orbital densities
around the ground-state values to treat correlation effects. Combining this Hamiltonian with the
dynamical mean-field theory, we have developed an ab initio and fully self-consistent scheme
for electronic structure calculations. This scheme was applied to the problem of the metal–
insulator transition in LaH3−x and resulted in a qualitatively better agreement with experimental
data.
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